Prion Domain of Yeast Ure2 Protein Adopts a Completely Disordered Structure: A Solid-Support EPR Study
نویسندگان
چکیده
Amyloid fibril formation is associated with a range of neurodegenerative diseases in humans, including Alzheimer's, Parkinson's, and prion diseases. In yeast, amyloid underlies several non-Mendelian phenotypes referred to as yeast prions. Mechanism of amyloid formation is critical for a complete understanding of the yeast prion phenomenon and human amyloid-related diseases. Ure2 protein is the basis of yeast prion [URE3]. The Ure2p prion domain is largely disordered. Residual structures, if any, in the disordered region may play an important role in the aggregation process. Studies of Ure2p prion domain are complicated by its high aggregation propensity, which results in a mixture of monomer and aggregates in solution. Previously we have developed a solid-support electron paramagnetic resonance (EPR) approach to address this problem and have identified a structured state for the Alzheimer's amyloid-β monomer. Here we use solid-support EPR to study the structure of Ure2p prion domain. EPR spectra of Ure2p prion domain with spin labels at every fifth residue from position 10 to position 75 show similar residue mobility profile for denaturing and native buffers after accounting for the effect of solution viscosity. These results suggest that Ure2p prion domain adopts a completely disordered structure in the native buffer. A completely disordered Ure2p prion domain implies that the amyloid formation of Ure2p, and likely other Q/N-rich yeast prion proteins, is primarily driven by inter-molecular interactions.
منابع مشابه
Hierarchical organization in the amyloid core of yeast prion protein Ure2.
Formation of amyloid fibrils is involved in a range of fatal human disorders including Alzheimer, Parkinson, and prion diseases. Yeast prions, despite differences in sequence from their mammalian counterparts, share similar features with mammalian prions including infectivity, prion strain phenomenon, and species barrier and thus are good model systems for human prion diseases. Yeast prions nor...
متن کاملThe yeast prion protein Ure2: structure, function and folding.
The Saccharomyces cerevisiae protein Ure2 functions as a regulator of nitrogen metabolism and as a glutathione-dependent peroxidase. Ure2 also has the characteristics of a prion, in that it can undergo a heritable conformational change to an aggregated state; the prion form of Ure2 loses the regulatory function, but the enzymatic function appears to be maintained. A number of factors are found ...
متن کاملNew insights into the molecular mechanism of amyloid formation from cysteine scanning.
Our laboratory recently reported the identification of a peptide region, QVNI, within the prion domain of the yeast protein Ure2 that may act as an initiation point for fibril formation.(1) This potential amyloid-forming region, which corresponds to residues 18-21 of Ure2, was initially identified by systematic cysteine scanning of the Ure2 prion domain. The point mutant R17C, and the correspon...
متن کاملThe prion model for [URE3] of yeast: spontaneous generation and requirements for propagation.
The genetic properties of the non-Mendelian element, [URE3], suggest that it is a prion (infectious protein) form of Ure2p, a mediator of nitrogen regulation in Saccharomyces cerevisiae. Into a ure2Delta strain (necessarily lacking [URE3]), we introduced a plasmid overproducing Ure2p. This induced the frequent "spontaneous generation" of [URE3], with properties identical to the original [URE3]....
متن کاملYeast prions form infectious amyloid inclusion bodies in bacteria
BACKGROUND Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corr...
متن کامل